903 research outputs found

    Physiological conditions influencing regenerative potential of stem cells

    Get PDF
    Stem cells are being used in the treatment of cardivovascular diseases. Here, we review the physiologic and pathologic conditions that impact the regenerative potential of stem cells in the treatment of cardiovascular diseases which include the influence of donor age and the presence of metabolic syndromes. We will also discuss strategies such as pretreatment of the recipient tissue or autologous or allogeneic stem cells by growth factors or drugs and by providing a synthetic scaffold and genetic modifications that impact the regenerative potential of stem cells. Finally, we will evaluate the current state of treatment of acute or chronic cardiovascular diseases with allogeneic stem cells

    Getting old through the blood. Circulating molecules in aging and senescence of cardiovascular regenerative cells

    Get PDF
    Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells

    Oral plaque from Type 2 diabetic patients reduces the clonogenic capacity of dental pulp-derived mesenchymal stem cells

    Get PDF
    Type 2 diabetes (T2D) is a major metabolic disease and a key epigenetic risk factor for the development of additional clinical complications. Among them, periodontitis (PD), a severe inflammatory disease ascribable to a dysregulated physiology and composition of the oral microbiota, represents one of the most relevant complications. Periodontitis can impact the structure of the tooth and likely the stem and progenitor cell pool, which actively contributes to the periodontal microenvironment and homeostasis. Modifications of the oral plaque play a key role in the etiopathogenesis of PD caused by T2D. However, to what extent the biology of the progenitor pool is affected has still to be elucidated. In this short report, we aimed to explore the biological effects of oral plaque derived from T2D patients with PD in comparison to non-diabetic patients with PD. Oral plaque samples were isolated from T2D and non-diabetic subjects with PD. Dental pulp stem cells (DPSCs), derived from the premolar tooth, were conditioned for 21 days with oral plaque samples and tested for their clonogenic ability. Cultures were also induced to differentiate towards the osteogenic lineage, and ALP and osteocalcin gene expression levels were evaluated by real-time qPCR. Results have shown that the number of clones generated by DPSCs exposed to T2D oral plaque was significantly lower compared to controls (ctl). The multivariate analysis confirmed that the decreased clonogenesis was significantly correlated only with T2D diagnosis. Moreover, the effect of T2D oral plaque was specific to DPSCs. Indicators of osteogenic differentiation were not significantly affected. This study provides a new biological insight into the effects ascribable to T2D in PD

    Î’-blockers treatment of cardiac surgery patients enhances isolation and improves phenotype of cardiosphere-derived cells

    Get PDF
    Β-blockers (BB) are a primary treatment for chronic heart disease (CHD), resulting in prognostic and symptomatic benefits. Cardiac cell therapy represents a promising regenerative treatment and, for autologous cell therapy, the patients clinical history may correlate with the biology of resident progenitors and the quality of the final cell product. This study aimed at uncovering correlations between clinical records of biopsy-donor CHD patients undergoing cardiac surgery and the corresponding yield and phenotype of cardiospheres (CSs) and CS-derived cells (CDCs), which are a clinically relevant population for cell therapy, containing progenitors. We describe a statistically significant association between BB therapy and improved CSs yield and CDCs phenotype. We show that BB-CDCs have a reduced fibrotic-like CD90 + subpopulation, with reduced expression of collagen-I and increased expression of cardiac genes, compared to CDCs from non-BB donors. Moreover BB-CDCs had a distinctive microRNA expression profile, consistent with reduced fibrotic features (miR-21, miR-29a/b/c downregulation), and enhanced regenerative potential (miR-1, miR-133, miR-101 upregulation) compared to non-BB. In vitro adrenergic pharmacological treatments confirmed cytoprotective and anti-fibrotic effects of β1-blocker on CDCs. This study shows anti-fibrotic and pro-commitment effects of BB treatment on endogenous cardiac reparative cells, and suggests adjuvant roles of β-blockers in cell therapy applications

    A novel closed-chest porcine model of chronic ischemic heart failure suitable for experimental research in cardiovascular disease

    Get PDF
    Cardiac pathologies are among the leading causes of mortality and morbidity in industrialized countries, with myocardial infarction (MI) representing one of the major conditions leading to heart failure (HF). Hitherto, the development of consistent, stable, and reproducible models of closed-chest MI in large animals, meeting the clinical realism of a patient with HF subsequent to chronic ischemic necrosis, has not been successful. We hereby report the design and ensuing application of a novel porcine experimental model of closed-chest chronic ischemia suitable for biomedical research, mimicking post-MI HF. We also emphasize the key procedural steps involved in replicating this unprecedented model, from femoral artery and vein catheterization to MI induction by permanent occlusion of the left anterior descending coronary artery through superselective deployment of platinum-nylon coils, as well as endomyocardial biopsy sampling for histologic analysis and cell harvesting. Our model could indeed represent a valuable contribution and tool for translational research, providing precious insights to understand and overcome the many hurdles concerning, and currently quenching, the preclinical steps mandatory for the clinical translation of new cardiovascular technologies for personalized HF treatments

    Dark Chocolate Intake Positively Modulates Redox Status and Markers of Muscular Damage in Elite Football Athletes: A Randomized Controlled Study

    Get PDF
    Intensive physical exercise may cause increase oxidative stress and muscular injury in elite football athletes. The aim of this study was to exploit the effect of cocoa polyphenols on oxidative stress and muscular injuries induced by intensive physical exercise in elite football players. Oxidant/antioxidant status and markers of muscle damage were evaluated in 24 elite football players and 15 controls. Furthermore, the 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Oxidative stress, antioxidant status, and muscle damage were assessed at baseline and after 30 days of chocolate intake. Compared to controls, elite football players showed lower antioxidant power and higher oxidative stress paralleled by an increase in muscle damage markers. After 30 days of dark chocolate intake, an increased antioxidant power was found in elite athletes assuming dark chocolate. Moreover, a significant reduction in muscle damage markers (CK and LDH, p < 0.001) was observed. In the control group, no changes were observed with the exception of an increase of sNox2-dp, H2O2, and myoglobin. A simple linear regression analysis showed that sNox2-dp was associated with a significant increase in muscle damage biomarker release (p = 0.001). An in vitro study also confirmed that polyphenol extracts significantly decreased oxidative stress in murine myoblast cell line C2C12-derived. These results indicate that polyphenol-rich nutrient supplementation by means of dark chocolate positively modulates redox status and reduced exercise-induced muscular injury biomarkers in elite football athletes. This trial is registered with NCT03288623

    Platelet lysate-derived neuropeptide y influences migration and angiogenesis of human adipose tissue-derived stromal cells

    Get PDF
    Neuropeptide Y (NPY), a powerful neurotransmitter of the central nervous system, is a key regulator of angiogenesis and biology of adipose depots. Intriguingly, its peripheral vascular and angiogenic powerful activity is strictly associated to platelets, which are source of clinical hemoderivates, such as platelet lysate (PL), routinely employed in several clinical applications as wound healing, and to preserve ex vivo the progenitor properties of the adipose stromal cells pool. So far, the presence of NPY in PL and its biological effects on the adipose stromal cell fraction (ASCs) have never been investigated. Here, we aimed to identify endogenous sources of NPY such as PL-based preparations and to investigate which biological properties PL-derived NPY is able to exert on ASCs. The results show that PL contains a high amount of NPY, which is in part also excreted by ASCs when stimulated with PL. The protein levels of the three main NPY subtype receptors (Y1, Y2, Y5) are unaltered by stimulation of ASCs with PL, but their inhibition through selective pharmacological antagonists, considerably enhances migration, and a parallel reduction of angiogenic features of ASCs including decrease in VEGF mRNA and intracellular calcium levels, both downstream targets of NPY. The expression of VEGF and NPY is enhanced within the sites of neovascularisation of difficult wounds in patients after treatment with leuco-platelet concentrates. Our data highlight the presence of NPY in PL preparations and its peripheral effects on adipose progenitors

    Concomitant mutations G12D and G13D on the exon 2 of the KRAS gene. Two cases of women with colon adenocarcinoma

    Get PDF
    Colorectal cancer (CRC) is rapidly increasing representing the second most frequent cause of cancer-related deaths. From a clinical-molecular standpoint the therapeutically management of CRC focuses on main alterations found in the RAS family protein, where single mutations of KRAS are considered both the hallmark and the target of this tumor. Double and concomitant alterations of KRAS are still far to be interpreted as molecular characteristics which could potentially address different and more personalized treatments for patients. Here, we firstly describe the case of two patients at different stages (pT2N0M0 and pT4cN1cM1) but similarly showing a double concurrent mutations G12D and G13D in the exon 2 of the KRAS gene, normally mutually exclusive. We also evaluated genetic testing of dihydropyrimidine dehydrogenase (DPYD) and microsatellite instability (MSI) by real-time PCR and additional molecular mutations by next generation sequencing (NGS) which resulted coherently to the progression of the disease. Accordingly, we reinterpreted and discuss the clinical history of both cases treated as single mutations of KRAS but similarly progressing towards a metastatic asset. We concluded that double mutations of KRAS cannot be interpreted as univocal genomic alterations and that they could severely impact the clinical outcome in CRC, requiring a tighter monitoring of patients throughout the time.Abstract: Colorectal cancer (CRC) is rapidly increasing representing the second most frequent cause of cancer-related deaths. From a clinical-molecular standpoint the therapeutically management of CRC focuses on main alterations found in the RAS family protein, where single mutations of KRAS are considered both the hallmark and the target of this tumor. Double and concomitant alterations of KRAS are still far to be interpreted as molecular characteristics which could potentially address different and more personalized treatments for patients. Here, we firstly describe the case of two patients at different stages (pT2N0M0 and pT4cN1cM1) but similarly showing a double concurrent mutations G12D and G13D in the exon 2 of the KRAS gene, normally mutually exclusive. We also evaluated genetic testing of dihydropyrimidine dehydrogenase (DPYD) and microsatellite instability (MSI) by real-time PCR and additional molecular mutations by next generation sequencing (NGS) which resulted coherently to the progression of the disease. Accordingly, we reinterpreted and discuss the clinical history of both cases treated as single mutations of KRAS but similarly progressing towards a metastatic asset. We concluded that double mutations of KRAS cannot be interpreted as univocal genomic alterations and that they could severely impact the clinical outcome in CRC, requiring a tighter monitoring of patients throughout the time
    • …
    corecore